Python 线程详解
我们将会看到一些在Python中使用线程的实例和如何避免线程之间的竞争。你应当将下边的例子运行多次,以便可以注意到线程是不可预测的和线程每次运行出的不同结果。声明:从这里开始忘掉你听到过的关于GIL的东西,因为GIL不会影响到我想要展示的东西。
示例1
我们将要请求五个不同的url:
单线程
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
|
import
time
import
urllib2
def
get_responses
(
)
:
urls
=
[
'http://www.google.com'
,
'http://www.amazon.com'
,
'http://www.ebay.com'
,
'http://www.alibaba.com'
,
'http://www.reddit.com'
]
start
=
time
.
time
(
)
for
url
in
urls
:
print
url
resp
=
urllib2
.
urlopen
(
url
)
print
resp
.
getcode
(
)
print
"Elapsed time: %s"
%
(
time
.
time
(
)
-
start
)
get_responses
(
)
|
输出是:
1
2
3
4
5
6
|
http
:
//www.google.com 200
http
:
//www.amazon.com 200
http
:
//www.ebay.com 200
http
:
//www.alibaba.com 200
http
:
//www.reddit.com 200
Elapsed
time
:
3.0814409256
|
解释:
- url顺序的被请求
- 除非cpu从一个url获得了回应,否则不会去请求下一个url
- 网络请求会花费较长的时间,所以cpu在等待网络请求的返回时间内一直处于闲置状态。
多线程
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
|
import
urllib2
import
time
from
threading
import
Thread
class
GetUrlThread
(
Thread
)
:
def
__init__
(
self
,
url
)
:
self
.
url
=
url
super
(
GetUrlThread
,
self
)
.
__init__
(
)
def
run
(
self
)
:
resp
=
urllib2
.
urlopen
(
self
.
url
)
print
self
.
url
,
resp
.
getcode
(
)
def
get_responses
(
)
:
urls
=
[
'http://www.google.com'
,
'http://www.amazon.com'
,
'http://www.ebay.com'
,
'http://www.alibaba.com'
,
'http://www.reddit.com'
]
start
=
time
.
time
(
)
threads
=
[
]
for
url
in
urls
:
t
=
GetUrlThread
(
url
)
threads
.
append
(
t
)
t
.
start
(
)
for
t
in
threads
:
t
.
join
(
)
print
"Elapsed time: %s"
%
(
time
.
time
(
)
-
start
)
get_responses
(
)
|
输出:
1
2
3
4
5
6
|
http
:
//www.reddit.com 200
http
:
//www.google.com 200
http
:
//www.amazon.com 200
http
:
//www.alibaba.com 200
http
:
//www.ebay.com 200
Elapsed
time
:
0.689890861511
|
解释:
- 意识到了程序在执行时间上的提升
- 我们写了一个多线程程序来减少cpu的等待时间,当我们在等待一个线程内的网络请求返回时,这时cpu可以切换到其他线程去进行其他线程内的网络请求。
- 我们期望一个线程处理一个url,所以实例化线程类的时候我们传了一个url。
- 线程运行意味着执行类里的
run()
方法。 - 无论如何我们想每个线程必须执行
run()
。 - 为每个url创建一个线程并且调用
start()
方法,这告诉了cpu可以执行线程中的run()
方法了。 - 我们希望所有的线程执行完毕的时候再计算花费的时间,所以调用了
join()
方法。 join()
可以通知主线程等待这个线程结束后,才可以执行下一条指令。- 每个线程我们都调用了
join()
方法,所以我们是在所有线程执行完毕后计算的运行时间。
关于线程:
- cpu可能不会在调用
start()
后马上执行run()
方法。 - 你不能确定
run()
在不同线程建间的执行顺序。 - 对于单独的一个线程,可以保证
run()
方法里的语句是按照顺序执行的。 - 这就是因为线程内的url会首先被请求,然后打印出返回的结果。
实例2
我们将会用一个程序演示一下多线程间的资源竞争,并修复这个问题。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
|
from
threading
import
Thread
#define a global variable
some_var
=
0
class
IncrementThread
(
Thread
)
:
def
run
(
self
)
:
#we want to read a global variable
#and then increment it
global
some_var
read_value
=
some_var
print
"some_var in %s is %d"
%
(
self
.
name
,
read_value
)
some_var
=
read_value
+
1
print
"some_var in %s after increment is %d"
%
(
self
.
name
,
some_var
)
def
use_increment_thread
(
)
:
threads
=
[
]
for
i
in
range
(
50
)
:
t
=
IncrementThread
(
)
threads
.
append
(
t
)
t
.
start
(
)
for
t
in
threads
:
t
.
join
(
)
print
"After 50 modifications, some_var should have become 50"
print
"After 50 modifications, some_var is %d"
%
(
some_var
,
)
use_increment_thread
(
)
|
多次运行这个程序,你会看到多种不同的结果。
解释:
- 有一个全局变量,所有的线程都想修改它。
- 所有的线程应该在这个全局变量上加 1 。
- 有50个线程,最后这个数值应该变成50,但是它却没有。
为什么没有达到50?
- 在
some_var
是15
的时候,线程t1
读取了some_var
,这个时刻cpu将控制权给了另一个线程t2
。 t2
线程读到的some_var
也是15
t1
和t2
都把some_var
加到16
- 当时我们期望的是
t1
t2
两个线程使some_var + 2
变成17
- 在这里就有了资源竞争。
- 相同的情况也可能发生在其它的线程间,所以出现了最后的结果小于
50
的情况。
解决资源竞争
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
|
from
threading
import
Lock
,
Thread
lock
=
Lock
(
)
some_var
=
0
class
IncrementThread
(
Thread
)
:
def
run
(
self
)
:
#we want to read a global variable
#and then increment it
global
some_var
lock
.
acquire
(
)
read_value
=
some_var
print
"some_var in %s is %d"
%
(
self
.
name
,
read_value
)
some_var
=
read_value
+
1
print
"some_var in %s after increment is %d"
%
(
self
.
name
,
some_var
)
lock
.
release
(
)
def
use_increment_thread
(
)
:
threads
=
[
]
for
i
in
range
(
50
)
:
t
=
IncrementThread
(
)
threads
.
append
(
t
)
t
.
start
(
)
for
t
in
threads
:
t
.
join
(
)
print
"After 50 modifications, some_var should have become 50"
print
"After 50 modifications, some_var is %d"
%
(
some_var
,
)
use_increment_thread
(
)
|
再次运行这个程序,达到了我们预期的结果。
解释:
- Lock 用来防止竞争条件
- 如果在执行一些操作之前,线程
t1
获得了锁。其他的线程在t1
释放Lock之前,不会执行相同的操作 - 我们想要确定的是一旦线程
t1
已经读取了some_var
,直到t1
完成了修改some_var
,其他的线程才可以读取some_var
- 这样读取和修改
some_var
成了逻辑上的原子操作。
实例3
让我们用一个例子来证明一个线程不能影响其他线程内的变量(非全局变量)。
time.sleep()可以使一个线程挂起,强制线程切换发生。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
from
threading
import
Thread
import
time
class
CreateListThread
(
Thread
)
:
def
run
(
self
)
:
self
.
entries
=
[
]
for
i
in
range
(
10
)
:
time
.
sleep
(
1
)
self
.
entries
.
append
(
i
)
print
self
.
entries
def
use_create_list_thread
(
)
:
for
i
in
range
(
3
)
:
t
=
CreateListThread
(
)
t
.
start
(
)
use_create_list_thread
(
)
|
运行几次后发现并没有打印出争取的结果。当一个线程正在打印的时候,cpu切换到了另一个线程,所以产生了不正确的结果。我们需要确保print self.entries
是个逻辑上的原子操作,以防打印时被其他线程打断。
我们使用了Lock(),来看下边的例子。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
|
from
threading
import
Thread
,
Lock
import
time
lock
=
Lock
(
)
class
CreateListThread
(
Thread
)
:
def
run
(
self
)
:
self
.
entries
=
[
]
for
i
in
range
(
10
)
:
time
.
sleep
(
1
)
self
.
entries
.
append
(
i
)
lock
.
acquire
(
)
print
self
.
entries
lock
.
release
(
)
def
use_create_list_thread
(
)
:
for
i
in
range
(
3
)
:
t
=
CreateListThread
(
)
t
.
start
(
)
use_create_list_thread
(
)
|
这次我们看到了正确的结果。证明了一个线程不可以修改其他线程内部的变量(非全局变量)。
转自:http://blog.jobbole.com/52060/
收 藏
成长的对话版权声明:以上内容作者已申请原创保护,未经允许不得转载,侵权必究!授权事宜、对本内容有异议或投诉,敬请联系网站管理员,我们将尽快回复您,谢谢合作!